JOURNAL OF COMPUTATIONAL PHYSICS 113, 75-81 (1994)

Some Experiments on Numerical Simulations of Stochastic
Differential Equations and a New Algorithm

W. P. PETERSEN

Iterdisziplindres Projektzentrum fiir Supercomputing, ETH, Ziirich, Switzerfand

Recetved February 21, 1992; revised August 31, 1993

In this paper we compare three second order methods far the numeri-
cal integration of 116 stochastic differential equations. One of these
methods is new. We consider stability of implicit vs, explicit methods
and compare the effects of step size, sample size, and type of increment
used to approximate the Brownian motion.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Recent reformulations of quantum statistical mechanics
in terms of Langevin equations has spurred interest in
numerical procedures for simulating the differential equa-
tions of continuous Markov processes [1,2]. In this
motivation {e.g., [3]), one is interested in computing an
ensemble average'

¢y ST,
- j‘eﬁsn) H:";: dx' ’

where f(x) is some physical quantity, S is an action on
m-dimensional phase space {x', i=1, .., m}, with m usually
very large. The Langevin approach to approximate {f
sets up a convergent stochastic process x(z} varying with
simulated time 2,

dxi=

. dey'
3 3v dit + dw'(t)

(1)

and computes a long-time average (large 7')

Syxg] Ao

In the Langevin equation (1), « is a m-dimensional
Brownian meotion, Whenever the m-dimensional phase

! Superscripts are used to indicate vector indices in order te distinguish
them from discrete time-steps denoted by subscripts.

space is non-Fuclidean {e.g., confined to the surface of a
torus or a sphere), the unit coefficient of dw m (1) will
appear as a diffuston coefficient matrix depending on the
process x [2].

Although the above example illustrates a familiar motiva-
tion, Monte Carlo simulations of such processes have a
wider scope In approximations of many types of multi-
dimensional partial differential equations of elliptic and
parabolic type using generalizations of the Feynman-Kac
formula [4].

Thus, here we describe simulations of stochastic differen-
tial equations of a general form

dx =b(x) dt + o(x) div(1), {2)

where process w(z) is a vector-valued Brownian motion
whose properties are entitely determined by the conditions
(r,s=1, .., m, where m is the size of vectors x, @):

w(0)=0
{@'(1)>=0
Cw'(ty) w'(ty)) =minlz,, 1,) 0,,.

Drift coefficient 5(x) is a vector and diffusion coefficient
a{x} 15 a matrix.

The diffusion coefficient o(x) depending on x introduces
difficuities. Since the Brownian motion {(Wiener process)
w(f) is not of bounded variation, one must be careful
defining the meaning of the diffusion. Here, we have chosen
the It definition [57] wherein (2) is shorthand for

X0 =xO)+ [ b)) d+ [ atx@ydot), ()
o

with the diffusion term interpreted as a belated stochastic
integral

; -1
j a(x(x}) dot) = lim Y olx(t ol ) — o))
a Ai=0 g
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Here, At =max;(t;—t,_,) on the ordered lattice 0 =1, <
f < .- <t, =t of time points.

2. NUMERICAL APPROXIMATIONS

For simplicity we consider first the case that process x 1s
a scalar complex variable. Generalizations to vector-valued
complex processes are fairly straightforward and foilow
below. We wish to find a discrete approximation in the finite
interval (stepsize) /. Our new algorithm will rely entirely
upon the following decomposition.

4+ h t+h
Ax=j b(x()) dt +J o(x(t)) dor(t)

=44 +AM.

The increment AA {(drift) is of bounded vartation O(#), and
AM is a martingale [5] of O(h'”*) in probability. This
means AM has the expectation values (AM>=0 and
{(AMY ) = O(h).

We will be content with a weak sofurion.” That is,
¥f(x)e C* we want [7]

<f(x0+f+h dx('r))>

= {flxo) + f(x0) dx+ 517 (x0) 4x7 + L [ (x4} x>
+ & Pxo) Ax*Y + O(H). (4)

Having chosen the Ité definition of the diffusion, we insist
that the martingale AM satisfy

(AM» =0 (5)

to all orders in A
3. THE SCHEME OF MIL’SHTEIN

We start with Mil'shtein’s [7] simplified Taylor series.
Repeated substitutions of the left-hand side of (3) for r=h
into the right-hand side of (3} yields the following series
{where £ 1s some model for dw):

Ax=boh+ Yboaoht + b + b0 b

drift

+ 0o+ Sao(E2 ~ M)+ Sopboh + Salobhi.  (6)

diffusion

The tricks used to obtain this approximation are (from [7])
as follows (readers unfamiliar with the 1td calculus are
referred to the book by Kloeden and Platen [6]):

2 A detaited discussion of weak vs strong solutions is in Kloeden and
Platen [6].

« In the second term in the diffusion, the 1t6 rule gives

) = 2w deo + dt;

hence,

["odo =&~ ()

« To O{h7) in terms of (4) we approximate

f’ T daxt) = Shé.

[

« Likewise (integrate by parts since 7 18 deterministic),

F (1) dr ~ Lhe.

o]

+ And, because the integral is belated,
h
[ o0 dote)~ she ~ 13,
4]

where £, 15 independent of and identically distributed to &

« Finally, one ignores the Q(h?) term in diffusion. Since
this term has vanishing expectation (5), no inner product
(within (4)} with any stochastic term of at least O(k'*) will
contribute to O(#%). Furthermore, no inner product with
any deterministic term will contribute to this order either.

In this paper we use a model, £ for increments of the
Brownian motion,

t+ A
(xdo=| doto),
=./hz

where z is a zero mean, unit variance, symmetrically dis-
tributed random variable (e.g., gaussian).

4. A NEW ALGORITHM

Starting with Mil'shtein’s Taylor series (6), we can derive
a Runge-Kutta type algorithm. Note that an explicit
trapezoidal rule

h
-2-(b(x0)+b(x0+00§]+b0h)]
1 ' 1 ] l 2 2
:b0h+§b000hél+§ hb +5b0‘ Gh

obtains all of the drift in (6) correct to O(A7).
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Now look at the diffusion: with £, an estimation for an
intermediate A step, we start with

olxg+aooly+ fboh) &,
= {Uo +aop008, + Bagboh+ %’IZGS(%}Z ‘fcz)

+oapogoohyCoh + 31‘!&30'3’(00)3 & &+ O(R).
Thus, to O(#?%), we examine the pair

Hoalxg+aoglo+ fhoh) + a(xo— 0o+ fhoh)} &,
=0+ Poobohl, + 3a’e5(0,) £58,

with choice a=2""? and f=1. In evaluations of correla-
tions in {4), with respect to inner-products with deter-
ministic terms and the only ((4'??) term to contribute to
O(h*), namely &;:E3xh Finally, adding the It term
1a464(E2 — k) obtains all of the diffusion correct from (6).
Hence, we have the following second-order scheme:

h
Xg =-\’0+‘2’ (Blxg) + b(xg+ 008, + boh))

1 1
+§ {a (x0+ 1/2 aoég+~2-b0h)

-Hr(x(,—,/l/.? 0'050—}-%[70}1)} £

1
+5 000051 —h). {8)

2

Furthermore, replacing the b(x,+ 6,&,+ boh) term by
bix,) yields an implicit form [8, 9] which is also weakly
O(h*) accurate. This is straightforward and shown by
repeated substitution and comparing with the Mil'shtein
Taylor series. Maple [10] was used for this repeated
substitution. Thus,

h
Xp=Xg+ 5 (hl(xq) + b{x, )

2
+0 (xo‘ \/1/_200604-%50!1)} &)

1
+3 aoalEi —h)

1 1
+‘{5(X0+ 1/26050‘}'5[)0}7)

)

is also second order, but due to the appearance of x, in the
right-hand side, a Newton method or something similar
must be used to find x, at each step. For so-called stiff equa-
tions, those with widely differing time scales, this form is
significantly more stable. Section 6 contains an example.

5. THE ALGORITHM OF TALAY

Another interesting algorithm, accurate to O{#%) in the
weak sense, is the method of Talay [117. It uses two
random variables per time step and is a two-stage method:

X, = Y2 00k0+ Hb— o0 )y h+ S600,hEL
= Xo+ {20080+ /2 0(x,) &~ 12 00(E0+ 1))
+(b— a0’ )x\ ) A

+{3000580h + 300'(x,) ETh— 30005(0 + €1 1),
(10)

6. MULTIVARIATE CASE

The gencralization to the vector-valued case s
straightforward and follows the expansien in a Taylor series
according to the method of Mil'shtein [7, 8]. The only
difficulty is to model the integrals (vector indices run
r,5=1, .., m, where m is the size of the w{!) vector),

J-: w' dw*=hZ"™

A simple model (e.g., Talay [11], or [6] Section 5.12)
satisfies the calculus to O(#%):

iz = 1) if r=s5,
ZP =25 -27)  for r>s,
3(zyz3+3")y  for r<s

r

Here, the mutually independent = variables are the zero
mean, variance = 1, random variables which appear in {11).
The 27 random variables are independent of the set {z7, r=
1, .., m} and likewise are mean zero and unit variance. The
construction of the Z matrix requires m(m — 1)/2 of these 3
variables. For example, in a two-dimensional case, the
approximation for Z in | " dew* = hZ " looks like

[Z“, Z”J:[%(zfzﬁ—l), ilziz
zy, z= Hziz)~3), (3

where z{, z7, and Z=3'? are the needed random variables.
The z, variables are the same as those appearing in the drift
and cutside of the diffusion in (11). Al the z, and Z variables
are mutuoally independent and, furthermore, mutually inde-
pendent of the vector z, which appears in the inner portion
of (11). Hence, (11} requires (m* + 3M)/2 univariant, zero-
mean variables. Section 8 discusses the forms of these
variables in more detail.

Altogether, the algorithm for the multivariate case
{(k=1,.,m)is
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xb=xt +g {(b*(xo) + D (xo+ S h oyz, + boh))

+§ S {a"’ (x0+,/h/2 0020+§b0)
1

r=

h
+a*r (xo —VH2 ez + 3 bo)} 2"

+h Y (86§ )etZr

fLrs=1

(1

Indices in (11} for inner function arguments are suppressed.
In the scalar case, an alternate form uses z, = 1; both forms
are weakly O(#?) accurate. The random variable matrix Z*
is constructed from z7, z3, and £ as above. Also, the
notation ¢'(arg) means d(arg)/éx’. Algorithm (11) has been
tested for a d =2+ 1 lattice fermion model by Klauder and

Lee [ 12].

Implicit Forms

An implicit form for the multivariate case analogous to
(9) is the same as (11} with the #(x, + \/E OpZ, + bt} term
in the drift replaced by #%(x,). Solving this for the vector x,,
usually requires an implicit numerical method (see, e.g.,
[13]), except when b is linear.

A simple example illustrating the increase in stability by
using implicit methods is given by a two-dimensional
Ornstein—Uhlenbeck equation. This problem is a straight-
forward generalization of the stiffness example for ordinary
differential equations found in Bulirsch and Stoer [14,
p.462],

dx’) dt Ay A, A =4 x dw (1)
[a’yJ =2 [/ skt JH * [dwz(r) - 03
Written in matrix form it is

du=dt Au+ dw,

where u=(x, y)* and w= (w,(¢), w,(¢})". The solution to
(12) 1s formally

a(7) = e"u(0) +j{ 4= gw(z). (13)
0

This process becomes stationary for large 7 when the eigen-
values of 4 have negative real parts. As t — oo, the initial
value part of (13), e*'s, — 0. In that case, the asymptotic
correlation matrix is

(o) u’(o)y = lim (u'(0) w/(1))

it 55 o gy

Ll
x Cdwr (1) dw'(n). (14)

This can be easily evaluated using {dw*(t)dw'(n)) =
8., {1t —n) dr dy, giving an integral of a matrix exponential.
Cur matrix A is symmetric, commutes with its transpose,
thus by (14) and the ergodic theorem

. . | B ‘
() wio)> = lim = L w(r) w/(r) dr

1 i
=547 (15)

The second-order Runge-Kutta method (explicit trapezoidal
rule) (11) applied to (12) is
Wy =W+ S {Au + AQu +hdu + Jhz)) + . Jh g,
=(1+hA+ 30747 u, + (1 + haj2) Jhz,,  (16)
while an implicit trapezoidal rule (implicit form of (11)) for

(12} 1s

W = —h4/2) T [(L+ A4/ 2V v, + S h )]
The stability condition is that the drift part of the one-step
fundamental matrix is contracting (see [ 14] or [9]). Which
for the explicit rule (16) can be shown for {4, > [4,] to be

(17)

I+ kA + L2420 = |1+ kA, + (hA)Y2) < 1.

This condition is (> i,> —2/h On the other hand, the
stability condition for the implicit trapezoidal rule (17) is

M1 =h4/2)~1 (1 hA/2)) = (1 + hi)/{(1 = his)) <

which is always satisfied for i, < 0. We shall se¢ in the
results, Section 8, that indeed, the implicit form is absolutely
stable (for big |4,]), while the explicit form fails precisely
where expected.

7. TEST PROBLEMS

The first {A) llustrates the stability argument of the
previous section. Namely, we show that for (A), when
Ay < —2/h, the usual argument for ordinary differential
equations holds in the stochastic case. Implicit algorithms
show better linear stability. Algorithms Mil'shtein (6],
Talay (10), and (8) were tested on the following additional
problems, Problem (B} illustrates the simplest linear diffu-
sion coefficient case. Both o and § were allowed to be com-
plex. Problems (C) and (D) are examples of semi-bounded
and bounded processes, respectively. We chose to examine
accuracy in these Monte-Carlo simulations by looking at
root-mean-square errors {over a range of k) in characteristic
functions,” ¢(k)= (e’ compared to sample averages

 These were also computed numeriéal[y. The infinite range integrals
were done using QUADPACK [15], finite range distributions by discrete
Fourier transform.
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(1/N) 3, e*. In addition, root-mean-square com-
parisons of the distributions of the processes’ real and
imaginary parts were also made.

The characteristic function as a vehicle for measuring
accuracy had the following advantages: (i} |#(k)| <1 is
bounded, which avoids round-off errors which pilague
moment comparisons, (ii) all of the properties of the
distribution are tested, and (iii) rms estimates of the
characteristic function in complex linear cases examined the
distributions of the processes’ real and imaginary parts.
Advantage (i) is important because moment comparisons
are dangerous, For exampie, in the linear problem below,
when f=0and a = 1, as r increases this martingale develops
increasingly larger populations of very small-valued paths,
but increasingly fewer and growing (in size) large-valued
ones, When averages are taken, contributions from small-
valued paths are truncated by round-off error when added
to the large-valued ones. All higher order moments look too
low [16] because contributions from the small ones are
underestimated. Advantage (iii) means that separate
histograms of real parts and imaginary parts do not show
any relationship between these parts.

The Test Problems
A, u()=e"u(0)+ [ e dw(z);
SDE, du=d: Au+dw,

(B—(12)2%) 1 + 2w .
B x=eP— 21 .

SDE, dx=fxdt+ox do,
C. x=cosh{w);
SDE, dx=ixdr+./x*—1dw,
D. x=I1/(a+w?);

SDE, dx= —{4ax®—3x%)di—2x . /x —ax? dw.

8. RESULTS

Not all of the experimental results can be iilustrated here
simply because of space. The qualitative conciusions,
however, are supported by the figures shown.

Stability

Figure ! shows long-time ergodic averages {u'(c0) u'(o0))
and (u'(o0) u?(o0)) given by the right-hand side of (14).
These were computed by discrete sums of process {16) and
process (17), respectively, while the lines were computed
from (15). Figure | shows that the explicit rule (16) is not
stable when the time constants A, and A, have widely
differing scales. Conversely, the mmplicit rule (17) 1s
absolutely stable for ali reasonable ratios |2,|/|4,]. It was
gratifying to see that Fig. 1 also shows that (16) fails when

581/113/1-6
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2—D Ornstein—Uhlenbeck
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FIG. 1. Stability of explicit trapezoidal rule (16) (O) vs implicit
trapezoidal rule (17} (»).

|45] > 2/h, and this inequality is sharp. This result was
expected from discretized ordinary differential equations
[14] and Section 6 above. Each simulation (16) and (17)
used a sample of n=1024, and from (15) T= 10000 (109
timesteps}, with stepsize = 0.01. Error bars indicate the
variance among the n = 1024 sample of long time averages.

Sample Size

It should not come as any shock, but Fig. 2 clearly shows
that the best results come from large sample sizes. In this
figure, the 1 /\/XT behavior of the error is clearly illustrated.
The example is from the problem B with the parameters
shown. {The notation is RK = Runge-Kutta (8); GNM =
Mil’shtein (6); and DT = Talay (10).) For the other test
examples the results are similar; namely, there are no essen-

[ e S

0.05 |
Rms ¢ error: t=3.
[R-linear, h=.001, a=1/2, B=—1/2]
L [(RK.GNM)=0, (DT)=+) |
|
6 o_ozf g :
i
Q{ hd
n & A
£
[ =)
¢ 001 — —
= F + 4
- L -
- =) a -
0.005 | . 1
e ] 5
500 1000 2000 5000 10000 20000

sample size

FIG. 2, Effect of sample size for real linear problem.
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tial accuracy differences between the algorithms when the
problem is well posed and stable.

Vector/parallel computers make taking larger samples
more attractive, That is, simultaneous paths were computed
in inner loops according to

=y 444 A, =1, N,

where, random variables z in (8) were computed by pairs
using the Box—Muller [17] method. Both lagged Fibonacci
series [18] and standard linear congruential generator
methods were tested. There were no discernible differences
in the results—except on the Cray Y-MP (sn1522 at ETH,
Ziirich) and the NEC SX-3 in Manno the lagged Fibonacci
series method is {aster.

Effects of de Increment

Results were fairly insensitive to the form of the Aw
approximation. Several forms were tried: gaussians (as
above), simple uniforms (dow=2 \/3_hu, where wue
(—1, +1)), and hats (Adw = /6h (1, + u,), where u,, u €
(_%’ +%))

The only exception to this is the three-state form often
seen in the literature:

+./3h
dw = —\/37

0 with probability Z.

with probability 1,
with probability 1,

In Fig. 3, we see a plot of in Re(¢(k}) for 64 points in the
range shown. The three-state model for 4w shows a lot of
scatter for the high wave numbers. The discontinuous dis-
tribution three-state model for Aw introduces unwanted
high-frequency modes to which #(k) is sensitive. Since this
result was at first surprising, it is presented as a note of

1.0 T H.:mlﬁ*.-umi T

dx=xdw 1

= gaussian b

0.5 — = —

L % A

= L X :

! 0.0 — T ot

& 1 % 7

L e R

-0.5 |- —

F L= 1.00, N= 1024, h = .010 -

—].0_ L t@ul L !l\lllllgl;ttlllnl :_A_r|u:
01 1 10 100 1000

k value

FIG. 3. Discrete 4w comparison,

_I T T |‘ T T H o T .‘ T T .‘!
L Ave. ¢ error: t=1..10 7!
L= [1/{a+w?), n=32768, a=1/10] |
E [(EK)=0, (DT)=+, (GNM)=¢] ]
5 i ¥ )
=
E 01 = —
K - +
e o i
=% - .
L © ]
0.01 = —
E X s ]
‘S L | '$ % 1 1 | l} H 1 L ‘j
107° 107¢
step size
FIG. 4. Rms error vs A far 1/(a + ©*) problem.

caution. Studies using uniform distributions and hats were
indistinguishable from gaussians.

Effects Due 10 Step Size

The drift increment (4.4) is O(h) while the diffusion (4M)
is O(h'?). Thus, if the drift coeflicient #(x) and the diffusion
coefficient ¢(x) are relatively the same size, AM is O{1 /\/Z)
larger than AA! This is significant because unless the drift
coefficient is large, the step-size will not be very important.
For this reason, the importance of order (O(4?) in the algo-
rithms here) takes a very different importance than in
ordinary differential equations.

This explains why there are many simulations of
Langevin equations which use the forward Euler method
fairly successfully. However, when b(x) is large, the step size
and order become important. In Figs. 4 and § we illustrate

Ave. P{x} error, t=1..10
cosh(w), N=32768 7
0.010 — —
(RK)=0O, (DT)=+
) L _
o
i F .
=
@
v i ]
=] L
B _
g 0.005 — o —
g L ua jal ﬁ & ] = o |
GJ »
[m)
oooo ol e el
1072 1072 107" 10°
step size

FIG. 5. Rms error vs 4 for cosh(w) problem.
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this point. In Fig. 4 the rms error in the characteristic func-
tion for the process x = 1/(a + w?) is plotted. This function
was computed using discrete Fourier transform [19] for
128 bins of a uniform histogram. In Fig. 5, a similar rms
error in the distribution function for x=cosh{w)
(problem B) is plotted. The characteristic function for
x=cosh(w) is highly oscillating and is hard to scale, The
comparison of Fig. 4 and Fig. 5 is quite striking. Namely,
Fig. 4 shows quadratic behavior in the error with respect to
step-size, while in Fig. 5 the error shows {lat behavior! Tests
on the simple martingale dx = x dw show the same behavior
as in x = cosh{w}): accuracy of the results are very insensitive
to step-size; only sample size matters, On the other hand, for
the x=1/(a+ w?) problem, the drift coefficient behaves
initially (¢ ~0) like —4/a”, which for small values of a is
very large; hence we see a strong sensitivity to step-size.

9. CONCLUSIONS

The experiments presented here support the following
conclusions:

1. The three algorithms tested here, the Taylor expan-
sion of Mil'shtein (6), the two-stage algorithm of Talay (10),
and the Runge—Kutta of Section 4 (8), show no essential
accuracy differences. Due to the extra derivatives (function
calls) in (6), this algorithm is slower. In the scalar process
case (8) is fastest since it uses only one random variable per
step. For the multivariate case the number of random
variables and number of function calls per step in {8} and
(10) is the same, However, example (A ) illustrates that just
as in discrete ordinary differential equations simulations,
implicit stability can be important. That (9) and (11) lend
themselves to implicit {and semi-implicit) variants is very
attractive.

2. Sample size determines accuracy typical of Monte-
Carlo—namely, l/ﬁ behavior.

3. The form of the increment model (£~ dw) for the
Brownian motion {Fig. 3} did not seem very impor-
tant—continuously distributed uniforms, gaussians, and
hats worked equally well. However, a discontinuously
distributed increment iike the three-state model { \/ﬁ 0)
introduced high-frequency problems that showed up
right away in characteristic functions. This model also

costs more to compute than a simple uniform model,
Aw = /3h (2u~ 1), where ue{0,1) is from a standard
Fortran library random number generator.

4, For the linear test problem dx=fxdt+axdw, a
range of values for o and f were examined for which ¢(k) is
defined: (real «, #) or (« purely imaginary). From which
we conclude complex processes seem to pose no obvious
difficulties.

5. Finally, for strongly diffusion driven processes
(b < o) the simulations are fairly step-size insensitive,

The author thanks Sean Lee for valuable discussions and
testing of the muitivariate algorithm. The author’s e-mail
address is wpp@ips.ethz.ch.
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